Какие функции выполняет цитоплазма в бактерии?

Описаны: формирование, состав строение и функции рибосомы. Подробно описано участие рибосомы в синтезе белков мышечных волокон. Дано определение и описание функций полисомы. История открытия рибосом и их функции.

Рибосомы мышечного волокна

Рибосомы – очень мелкие (диаметром до 0,02 мкм), органеллы общего назначения мышечного волокна. Это означает, что эти органеллы имеются в любой клетке. По одним источникам количество рибосом в мышечном волокне составляет десятки тысяч, по другим – несколько миллионов.

Расположение рибосом в мышечном волокне

Рибосомы формируются в ядрах мышечных волокон (более точно – в ядрышках), а затем через ядерные поры выходят в саркоплазму. Они располагаются недалеко от ядер мышечных волокон на шероховатой эндоплазматической сети.

Функции рибосом

Функция рибосом состоит в синтезе различных белков. Выражаясь более точно рибосомы осуществляют сборку белков из аминокислот. В рибосомах протекает третий этап синтеза белков, называемый трансляцией. В процессе трансляции на основе генетического кода, записанного в молекуле информационной РНК (иРНК) на рибосомах синтезируются все белки, необходимые для нормального функционирования мышечного волокна. Этими белками являются: актин, миозин, тропонин, тропомиозин, титин, десмин, виметин, синемин, дистрофин, спектрин и многие другие. Затем на основе этих белков формируются миофибриллы.

Строение рибосомы

Рибосомы не имеют внешней оболочки. Это немебранные органеллы мышечного волокна. Рибосомы состоят из двух субчастиц – большой и малой, между которыми имеется щель (рис.1). Эту щель иногда называют функциональным центром рибосомы (ФЦР). В этой щели располагается молекула иРНК. На большой субъединице имеется бороздка, по которой сползает синтезируемая молекула белка. Основу рибосом составляет рибосомная РНК (рРНК), и белки. Рибосомы мышечных волокон наполовину состоят из рРНК. Остальное представляют различные белки.

Рис.1. Строение рибосомы

Рибосомы были открыты в середине прошлого века.  За исследования  структуры и функций рибосом Томас Стейц, Венкатраман Рамакришнан и  Ада Йонат в 2009 году были удостоены Нобелевской премии.

Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«

Полисома

Для увеличения производства белков иРНК часто проходит не через одну, а через несколько рибосом, расположенных рядом друг с другом. Такая структура, объединенная одной молекулой иРНК называют полисомой (рис.2). На каждой рибосоме последовательно синтезируются несколько молекул одинаковых белков. Вследствие этого синтезируется больше белка определенного вида.

Читайте также:  Можно ли вылечить эхинококкоз без операции. Эхинококкоз

Рис.2. Синтез молекул белка посредством  полисомы.

Подробно о структуре и функции рибосом написано в учебнике А.С. Спирина.

Литература

  1. Молекулярная биология. Структура рибосомы и биосинтез белка. Учебник для студ. биол. спец. вузов. М: Высшая школа, 1986.- 303 с.

С уважением,

Строение клеточной стенки и цитоплазматической мембраны

Клеточная стенка — упругое ригидное образование толщи-ной 150—200 ангстрем. Выполняет следующие функции:1) защитную, осуществление фагоцитоза;2) регуляцию осмотического давления;3) рецепторную;4) принимает участие в процессах питания деления клетки;

5) антигенную (определяется продукцией эндотоксина — основного соматического антигена бактерий);6) стабилизирует форму и размер бактерий;7) обеспечивает систему коммуникаций с внешней средой;8) косвенно участвует в регуляции роста и деления стенка при обычных способах окраски не видна, ноесли клетку поместить в гипертонический раствор (при опытеплазмолиза), то она становится стенка вплотную примыкает к цитоплазматическоймембране у грамположительных бактерий, у грамотрицательныхбактерий клеточная стенка отделена от цитоплазматической мембраны периплазматическим пространством.Клеточная стенка имеет два слоя:1) наружный — пластичный;2) внутренний — ригидный, состоящий из муреина.В зависимости от содержания муреина в клеточной стенке различают грамположительные и грамотрицательные бактерии (по отношению к окраске по Грамму).У грамположительных бактерий муреиновый слой составляет 80% от массы клеточной стенки. По Грамму, они окрашиваются в синий цвет. У грамположительных бактерий муреиновыйслой составляет 20% от массы клеточной стенки, по Грамму, ониокрашиваются в красный цвет.У грамположительных бактерий наружный слой клеточнойстенки содержит липопротеиды, гликопротеиды, тейхоевые кис-лоты, у них отсутствует липополисахаридный слой. Клеточнаястенка выглядит аморфной, она не структурирована. Поэтому приразрушении муреинового каркаса бактерии полностью теряютклеточную стенку (становятся протопластами), не способнык размножению.У грамотрицательных бактерий наружный пластическийслой четко выражен, содержит липопротеиды, липополисахаридный слой, состоящий из липида А (эндотоксина) и полисахарида(О-антигена). При разрушении грамотрицательных бактерий образуются сферопласты — бактерии с частично сохраненной клеточной стенкой, не способные к размножению.К клеточной стенке прилегает цитоплазматическая обладает избирательной проницаемостью, принимает участиев транспорте питательных веществ, выведении экзотоксинов,энергетическом обмене клетки, является осмотическим барьером,участвует в регуляции роста и деления, репликации ДНК, является стабилизатором обычное строение: два слоя фосфолипидов (25—40%) и белки.По функции мембранные белки разделяют на:1) структурные;2) пермиазы — белки транспортных систем;3) энзимы — состав мембран непостоянен. Он может менятьсяв зависимости от условий культивирования и возраста виды бактерий отличаются друг от друга по липидномусоставу своих мембран.

Читайте также:  Артоксан – инструкция по применению

Строение рибосом

Рибосомы относятся к немембранным органоидам. Они очень мелкие (около 20 нм), но многочисленные (тысячи и даже миллионы на клетку), состоят из двух частей – субъединиц. В состав субчастиц входят рибосомальные РНК (рРНК) и рибосомные белки, т. е. рибосомы по химическому составу являются рибонуклеопротеидами. Однако в них также присутствует небольшое количество низкомолекулярных соединений. Из-за многочисленности рибосом, рРНК составляет более половины от всей РНК клетки.

Одну из субъединиц называют «малой», вторую – «большой».

В собранной из субъединиц рибосоме выделят два (по одним источникам) или три (по другим) участка, которые называют сайтами. Один из участков обозначают A (aminoacyl) и называют аминоацильным, второй — P (peptidyl) — пептидильный. Данные сайты являются основными каталитическими центрами протекающих на рибосомах реакций. Третий участок обозначают E (exit), через него освободившаяся от синтезируемого полипептида транспортная РНК (тРНК), покидает рибосому.

Кроме перечисленных сайтов на рибосомах есть другие участки, используемые для связывания различных ферментов.

Когда субъединицы диссоциированы (разъединены) специфичность сайтов теряется, т. е. они определяются сочетанием соответствующих областей обеих субъединиц.

Процесс трансляции

Процесс синтезирования белка (как у бактерий, так и эукариотов) имеет следующий цикл:

  • инициация;
  • элонгация;
  • терминация.

Инициация

Инициация начинается с того, что к малой субчастице рибосомы присоединяется матричная РНК.

Если рибосомная макромолекула узнает тот трехбуквенный кодон, который есть на мРНК, то происходит присоединение антикодона тРНК.

Элонгация

Присоединений аминокислот, которые принесла тРНК и продвижение рибосомы вдоль матрицы с высвобождением молекулы тРНК.

Движение по мРНК осуществляется до тех пор, пока оно не достигает стоп-кодона, который имеется во всех матрицах.

Терминация

Новообразованный белок, который состоит из протранслированных аминокислот, отсоединяется.

В некоторых случаях завершение трансляции новообразованного белка сопровождается распадом (диссоциацией) рибосомы.

Читайте также:  Белые пятна при вич фото — Лечение ВИЧ и СПИД

Вакуоль

Вакуоль — одномембранный органоид, содержащийся в некоторых эукариотических клетках и выполняющий различные функции (секреция, экскреция и хранение запасных веществ, аутофагия, автолиз и др.). Вакуоли развиваются из мембранных пузырьков — провакуолей. Провакуоли являются производными эндоплазматического ретикулума и комплекса Гольджи, они сливаются и образуют вакуоли.

Рисунок 7. Вакуоль.

Вакуоль

Вакуоли и их содержимое рассматриваются как обособленный от цитоплазмы компартмент. Различают пищеварительные и сократительные (пульсирующие) вакуоли, регулирующие осмотическое давление и служащие для выведения из организма продуктов распада. Вакуоли особенно хорошо заметны в клетках растений: во многих зрелых клетках растений они составляют более половины объёма клетки, при этом они могут сливаться в одну гигантскую вакуоль. Одна из важных функций растительных вакуолей — накопление ионов и поддержание тургора (тургорного давления). Вакуоль — это место запаса воды.

Мембрана, в которую заключена вакуоль, называется тонопласт, а содержимое вакуоли — клеточный сок. Клеточный сок состоит из воды и растворенных в ней веществ.

Границы клеточного содержимого

Цитоплазма клетки прокариотов имеет 2 слоя ограничения:

  • цитоплазматическую мембрану (ЦПМ);
  • клеточную стенку.

Ограничивающие цитоплазму у бактерий слои имеют различные функции и свойства.

Клеточная стенка бактерии

Наружный укрывной слой прокариотов, клеточная стенка, представляет собой плотную оболочку и выполняет ряд функций:

  • защита от внешнего воздействия;
  • придание микроорганизму характерной формы.

Фактически клеточная стенка микроорганизмов является своеобразным наружным скелетом. Такое строение оправданно – ведь внутриклеточное осмотическое давление может в десятки раз превышать давление наружное, и без защиты плотной клеточной стенки бактерию просто разорвет.

Плотная клеточная стенка характерна только для бактериальных и растительных клеток – животная клетка имеет мягкую оболочку.

Клеточная стенка бактерий, ограничивающая содержимое клетки, имеет толщину от 0,01 до 0,04 мкм, причем толщина стенки увеличивается в процессе жизни микроорганизма. Несмотря на плотность клеточной оболочки, она проницаема. Вовнутрь беспрепятственно проходят питательные вещества, а продукты жизнедеятельности выводятся из нее.

Цитоплазматическая мембрана

Между цитоплазмой и клеточной стенкой располагается ЦПМ – цитоплазматическая мембрана. В бактериальной клетке она выполняет целый ряд функций:

  • регулирует поступление питательных веществ и вывод продуктов жизнедеятельности;
  • синтезирует соединения для клеточной стенки;
  • контролирует активность ряда ферментов, расположенных на ней.

Мембрана цитоплазмы настолько прочна, что бактериальная клетка может какое-то время существовать даже без клеточной стенки.